

Connecting the Dots for a Circular Blue Bioeconomy – Policy Event

AquaHealth – Prof. Dr.-Ing. Kerstin Kuchta

30th January 2024, Brussels

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 817992.

Outlook

66

Objective

Identification of novel **biofilm-inhibiting** and **antimicrobial enzymes**, as well as **antiviral** candidates derived from microalgae

- > Development of **prebiotic** cultures
- > As a **natural precautionary treatment** method
- > For **sustainable health management** in aquacultures

Photo: TUHH

Photo: Universität Hamburg

Photo: TUHH

Photo: TUHH

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817992.

Outlook

Project Results

Assessment of biofilm inhibition potential

- Microalgae microbiomes inhibit biofilm formation of fish pathogens to varying extent
- Most promising species were further investigated and their DNA and RNA sequenced
- Establishment of a metagenome sequencing pipeline and database

Enzyme testing and antiviral assay

- **Dienelactone hydrolase** protein family was found to be most promising
- **Dlh3** reduced the biofilm formation of fish pathogens up to **54%**
- Development of a **novel antiviral assay** revealed **strong antiviral effects** of some microalgae extracts, biomass, and supernatants

Life cycle assessment

- Development of **ex-ante LCA** model considering **deep uncertainty** of biological systems
- AquaHealth could potentially **reduce environmental impacts** by at least 5%

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817992.

uaHealth

Challenges

Outlook

66

Contribution to a Circular Blue Bioeconomy

Zero-waste approach

- Aquaculture effluents, wastewater, digestate, and other side streams can be used to cultivate microalgae
- Microalgae cultivation media can be reused
- Biorefinery concepts can be used to recover multiple products

Sustainable and renewable

- Potentially lower environmental impacts than conventional feed and disease treatment methods
- Microalgal biomass is **renewable** and can be **produced rapidly**
- Biological disease treatment method

Carbon cycling

- Efficient CO₂ sequestration from industrial sources and the energy sector
- Carbon utilization and temporary storage

quaHealth

Challenges

66

Outlook

Challenges

Cultivation substrates

- Utilization of **waste streams** or animal by-products is critical for **circularity**
- Regulations limit the use of waste streams/animal by-products
- Invalidation of ITMA schemes

Change of community composition

- Fluctuations of microbiome composition in outdoor settings
- **Polyculture** often necessary for **bioremediation** of effluents
- Fluctuations in **biomass composition** (standardization is difficult)
- Regulations are **species specific** and **require standards**

Use in functional feed or as a veterinary product

- Application of specific microalgae-based compounds (e.g. Dlh3)
- Unclear which directives or regulations apply

H

Challenges

Outlook

Summary and Outlook

Key findings:

- Microalgae **biomass**, **supernatants**, and **extracts** showed **antimicrobial** and **antiviral** effects against **fish pathogens**
- Dienelactone hydrolysate proteins (e.g. Dlh3) exhibit significant biofilm inhibition effects
- Potential **reduction** of **environmental impacts** from finfish aquaculture by more than **5%**

Outlook:

- Lifting regulatory barriers increases sustainability and viability of microalgal products
- Less complex and harmonized procedures and standards are suggested
- Stronger integration of microbiomes in microalgae research
- Possible reduction of antibiotics use
- Establishment of a sequenceing database and novel anti-viral assay

uaHealth

M.Sc. Alexander Hofmann

Interims project co-coordination

Prof. Dr.-Ing. Kerstin Kuchta Project coordination

Hamburg University of Technology Institute of Circular Resource Engineering and Management Blohmstrasse 15 D-21079 Hamburg

T +49 (0) 40 42878 4045 F +49 (0) 40 42878 2375 E aquahealth@tuhh.de

TUHH Hamburg University of Technology

Dr.-Ing. Sarah Löhn

Project co-coordination

UH Ĥ Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Sea & Sun Technology

https://aquahealth-project.com/

Federal Ministry of Education and Research

